
COMP6714 (16S2) PROJECT

DUE DATE: 23:59 10 OCT 2016 (MON)

1. Objective

In this project, you will build a relation extractor to extract specific relations from a
given corpus.

Note that it will take you quite some time to complete this project even if you are
familiar with various Python libraries and have good Python programming experience.
Therefore, we earnestly recommend that you start working on this project as early as
possible.

2. Background

Text documents often contain valuable structured data that is hidden in regular English
sentences. To extract them, we usually takes two steps. The first step is to perform Named
Entity Recognition (NER) to identity entity mentions and classify them into correct types
(PERSON, ORG, DATE, GPE1, etc.). The second step is to perform relation extraction exploiting
NER results.

Figure 1. Example Sentence

For example, in the sentence in Figure 1, there are 6 entities — 3 PERSON entities, 1 DATE

entity, 2 GPE entities. There are 5 different relations that hold between those 6 entities.
In this project, the NER results are given, and you will focus on the Relation Extraction
step.

Relations are usually represented as triplets of (subject, predicate, object). For example,
the above 5 relations can be represented as:

("Henry Hansen", DateOfBirth, "April 28,1907")

("Henry Hansen", PlaceOfBrith, "La Crosse")

("Henry Hansen", PlaceOfBrith, "Wisconsin")

("Henry Hansen", HasParent, "Andrew")

("Henry Hansen", HasParent, "Emma Petersen Hansen")

1GPE stands for geo-political entities such as city, state/province, and country.

1

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

2 DUE DATE: 23:59 10 OCT 2016 (MON)

3. Overview of the Tasks

You need to implement a program in Python 3 that extracts two specific relations from
an input file consisting of sentences and NER results. The two relations are : DateOfBirth,
and HasParent.

You also need to submit a report (in the PDF format) which answers the following
questions:

• A detailed description of your approach, why you chose such a approach and how
you formulated the task.

• A detailed description of the pattern used in your extractor. How do you discover
those pattern.

• How do you experiment and improve your extractor?

4. Entity Types

All input sentences have already been annotated with external tools and manually
cleaned. We list some common entity types in Table 1. For the full list, please refer
to https://spacy.io/docs/.

Table 1. Entity Types

Entity Type Description

PERSON People, including fictional.
DATE Absolute or relative dates or periods.
GPE Countries, cities, states.

5. Relation Types

Among those 3 entity types, many relation types can be defined. In Table 2, we list
several relations that can be define between entities. In this project, we only evaluate two
specific relations though (See Section 3).

6. Training Data and Format

We will release a training dataset consisting of sentences that contain at least one in-
stance of the two relations to be extracted. All training data are contained in one single
json file named training.json. This json file is a list of sentence objects. Each sentence
object is wrapped by a dictionary. The sentence_id field is used to identify the sentence.
The sentence field is a dictionary that contains the target sentence and pre-filled anno-
tations. text is the sentence text. annotation is a list of tuples that contains pre-filled
annotations for the sentence. Each tuple represent a token in the sentence and contains 5
fields. The 1st field is the order of the token in the sentence. The 2nd field is the word of
this token in the sentence. The 3rd field is the token after lemmatization. The 4th field

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

henry
Highlight

COMP6714 (16S2) PROJECT 3

Table 2. Relation Types

Relation Type Subject
Type

Object
Type

Description Eval.

DateOfBirth PERSON DATE The date on which the assigned person
was born.

Yes

HasParent PERSON PERSON The parents of the person. In addition
to biological parents, step-parents and
adoptive parents are also acceptable.

Yes

PlaceOfBirth PERSON GPE The Place in which the assigned person
was born.

No

AlternateName PERSON PERSON Names used to refer to the person that
are distinct from the ”official” name.
Alternate names may include aliases,
stage names, alternate transliterations,
abbreviations, alternate spellings, nick-
names, or birth names.

No

is the Part-Of-Speech tag of the token in this sentence. The 5th field is the Named Entity
Tag in IOB format2.

The positive ground truth relations is contained in the relations field. The relations

field is a list of relation triplets. Each triplets contains “subject”, “predicate”, and “object”
fields which are the main target of the output.

1 [

2 {
3 ” s e n t e n c e i d ” : ”TR.00001 ” ,

4 ” sentence ” :{
5 ” text ” : ” B i l l was born 1986 . ”

6 ” annotat ion ” :{
7 (1 , ” B i l l ” , ” b i l l ” , ”NNP” , ”B−PERSON”) ,

8 (2 , ”was” , ”be” , ”VBD” , ”O”) ,

9 (3 , ”born” , ” bear ” , ”VBN” , ”O”) ,

10 (4 , ”1986” , ” b i l l ” , ”CD” , ”B−DATE”) ,

11 (5 , ” . ” , ” . ” , ” . ” , ”O”) ,

12 }
13 } ,

14 ” r e l a t i o n s ” : [

15 {
16 ” s ub j e c t ” : ” B i l l ” ,

17 ” p r e d i c a t e ” : ” DateOfBirth ” ,

18 ” ob j e c t ” : ”1986”

19 } ,

20]

2https://en.wikipedia.org/wiki/Inside_Outside_Beginning

henry
Highlight
1. order
2. tocken
3. lemmatization
4. Part-Of-Speech tag
5. Named Entity
Tag in IOB format2.

henry
Highlight
a list of relation triplets

4 DUE DATE: 23:59 10 OCT 2016 (MON)

21 } ,

22 . . .

23]

Listing 1. Example Input Data

7. Code Skeleton and Output

In the project website, we will release a tar file named proj6174.tar. proj6714.tar

will contain 5 files.

• training.json : This is the training data.
• config.py : This is the file that contains the environment settings. You can modify

it based your own environment. DO NOT ADD NEW VARIABLES.
• relation.py: Defines the relation types. DO NOT MODIFY THIS FILE.
• run.py: This file is the entry point of execution. It reads in the data, calls the

extraction code, and evaluate the results of the extraction by reporting the F1
score. DO NOT MODIFY THIS FILE.

• extractor.py: This file is the starting point of your own code. It contains two func-
tions, extract_date_of_birth and extract_has_parent, that will be called to
perform the extraction. DO NOT REMOVE THOSE TWO FUNCTIONS.

In the code below, we show the skeleton code of extractor.py, this source code defined
the interface. The input argument sentence is the sentence data from input data. You
can only replace the middle section by your own code but you cannot change the inter-
faces. We will only call these two functions to evaluate your submission. The output of
those functions is a list of Relation objects. You can read the code of relation.py to
understand the data structure.

1 # −∗− coding : utf−8 −∗−
2

3 import c o n f i g

4 from r e l a t i o n import Re lat ion

5

6 de f e x t r a c t d a t e o f b i r t h (sentence) :

7 p r e d i c a t e = ”DataOfBirth”

8 r e s u l t s = []

9

10 ###

11 # Replace t h i s part to your own code o f e x t r a c t i n g DataOfBirth .

12 ###

13

14 re turn r e s u l t s

15

16 de f e x t r a c t h a s p a r e n t (sentence) :

17 p r e d i c a t e = ”HasParent”

18 r e s u l t s = []

19

henry
Highlight

henry
Highlight

COMP6714 (16S2) PROJECT 5

20 ###

21 # Replace t h i s part to your own code o f e x t r a c t i n g HasParent .

22 ###

23

24 re turn r e s u l t s

Listing 2. extractor.py

8. External Library

The project encourages you to design you own pattern-based relation extractor. We
do not allow you to use external library that can perform relation extraction straight-
away. The testing environment is based on a standard Anaconda 4.1.1 and Python 3.5
installation. There are some external libraries available to you:

• NLTK, version 3.2.1.
• Spacy, version 0.101.0.
• Stanford Core NLP, 3.6.0. The libraries can be accessed through NLTK. The path

variable is located in the config.py file.

You can run the following code in the skeleton to test if your environment has been
configured correctly or not.

python run.py training.json

If you want to use other external libraries for this project, please send email to LiC and
give strong reasong for needing it. We will evaluate each request and reply you with the
decision. If a library is approved, we will update them in the online submission system and
make it known to all students in the class.

9. Submission

You need to use our online submission system3 to submit your code. You will need to
login before submitting your code or viewing your results. The id is your student number
(e.g., z1234567) and your password will be sent to you by email.

To submit, please tar your source codes into a file named proj1.tar.gz4. This file size
is limited to 5MB.

Your submission should contain at least one files named

• extractor.py

in the root directory. You are free to add any other Python files. But files named run.py

and relation.py will be replaced with our standard version. DO NOT PUT YOUR
CODE in these two files.

You need to use our online submission system http://kg.cse.unsw.edu.au:8714/ to
submit your report as well. We only keep the last version for the evaluation.

3The URL will be sent to you by email.
4Use the command: tar cvfz proj1.tar.gz file1 file2 ...

6 DUE DATE: 23:59 10 OCT 2016 (MON)

10. Evaluation

Program Evaluation. The online submission system will unpack your submission and
run your code on a testing datasets. Your code should complete the processing within 10
minutes. Your results will be revealed online within 24 hours. You are limited to submit
at most 10 times. For each submission, the system will output the scores of each relation
and the mark of the this submission based on the marking scheme. Your final score will
be based on the one with the highest mark achieved.

In this project we will focusing only on two relations, one is DateOfBirth and another is
HasParent. Their score are marked separately and each has maximimum 40 marks. The
rest 20 marks is based on your report.

Evaluation Measure. The output of the extractor is a list of objects of Relations defined
in relation.py. Each Relation object contains three attributes, subject, predicate, and
object. When measure for correctness, we will check all three values of your output with
the correct relation instances extracted from the input. Only when all three attributes
are matched, the results is regarded as a correct one. The comparison is case-insensitive.
Please refer to the function check_correct in the run.py file for details.

Note: for sentences that contains multiple named entities that refer to the same person,
we only use the left-most one as the entity for the relation. For example:

Williams was born Robin McLaurin Williams at St. Luke’s Hospital

in Chicago, Illinois on July 21, 1951

Both Williams and Robin McLaurin Williams refer to the same person. We regard
the following triplet:

("Williams", DateOfBrith, "July 21, 1951").

correct, but this one:

("Robin McLaurin Williams", DateOfBrith, "July 21, 1951").

incorrect.
Given the output of the extractor, the system will first evaluate the precision (precision =

#Correct
#Output) and recall (recall = #Correct

#GroundTruth)5. Then the final score is the F1 measure of

both precision and recall

F1 = 2 · precision · recall
precision + recall

5#GroundTruth is the number of relations instances of a specific type in the input data.

henry
Highlight

COMP6714 (16S2) PROJECT 7

To convert the F1 score (0 to 1) measure to Mark (0 to 100) for each relation extractor,
we use a piecewise linear function:

Mark(x) =

0 x < a

60 · x−a
b−a a ≤ x < b

60 + 20 · x−b
c−b b ≤ x < c

80 + 20 · x−c
d−c c ≤ x < d

100 d < x

There are four parameters in the above formula: a, b, c, and d (also called check points).
For example, if you want to obtain at least 60 marks, your F1 score must be no less than
a. Each relation will have a separate set of check point values. We will release the value
in our online submission system.

Report Submission. Make sure you include your name and student ID in the report.

Bouns. For the extractor that reaches a F1-score that exceeds the check point d, Your
extractor will be entered into a “contest”. If it belongs to the 10 best performing submis-
sions, you will get at most 20 bouns points. More specifically, the 1st place will get 20
points, the 2nd place will get 18 points, and so on and so forth.

Late Panelty. The online submission system will be closed 5 days past the due day. -10%
per day for each of the first 2 days, and -20% per day for each of the following days.

Plagiarism. Make sure you read “8. Academic honesty and plagiarism” in http://www.

cse.unsw.edu.au/~cs6714/16s2/intro.html

