.. EOF
Fibonacci number(Recursive, DP and Decorator)
I found a fatastic video about Dynamic Programming, it can be used to solve Fibonacci number problem efficiently. Decorater can also be used to make code elegent ^o^
Fibonacci number: 1, 1, 2, 3, 5, 8, 13…
Original recursive implementation
def fib(n):
if n<=2: f = 1
else: f = fib(n-1) + fib(n-2)
return f
Improvement: memoization
- Reuse solutions to sub-problems to solve the problem
- So time = #sub-problems * O(sub-problem)
#!/usr/bin/python3
from collections import defaultdict
import sys
n = int(sys.argv[1])
mem = defaultdict(lambda: 0)
def fib(n):
global mem
# print(n)
if mem[n]:
return mem[n]
if n<=2: f = 1
else: f = fib(n-1) + fib(n-2)
mem[n] = f
print(f)
return f
def fib_con(n):
mem = {}
for k in range(1, 1+n):
if k<=2:
mem[k] = 1
else:
mem[k] = mem[k-1] + mem[k-2]
print(mem[k])
return mem[n]
fib(n)
fib_con(n)
Video link: https://www.youtube.com/watch?v=OQ5jsbhAv_MDP = recursion + memorization + guessing
Problem of the improvement above:
The disadvantage of this method is that the clarity and the beauty of the original recursive implementation is lost.
So we use a helper function to handle the fib() function, the idea of .
def memoize(f):
memo = {}
def helper(x):
if x not in memo:
memo[x] = f(x)
return memo[x]
return helper
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)
fib = memoize(fib)
print(fib(40))
That is Decorator: @memoize
U can check this website for more information:
http://www.python-course.eu/python3_memoization.php
@memoize
def fib(n):
...
print(fib(40))
Generator version
def fib(n):
a, b = 0, 1
for _ in range(n):
yield a
a, b = b, a+b
for i in fib(10):
print(i)